Energy Courses

PRGR 603 Solar Radiation and Energy Conversion - 2 credits

Solar Radiation: Components, Geometry of Earth and Sun, angle between collector and sun beam, Effect of Earth’s atmosphere, Measurements of solar radiation. The course provides a comprehensive analysis of solar thermal energy collection and utilization with an emphasis on the design, sizing and selection of solar thermal technologies such as: solar thermal power plants, solar water heaters, solar concentrators, solar ponds, and solar updraft towers.

PRGR 604 Solar PV Electricity - 2 credits

The course covers semi-conductor basics, photovoltaic (PV) module characteristics, Efficiency analysis; PV module types: mono-crystalline, Polycrystalline, Amorphous, Multilayer cells, Current research; PV module manufacture; Grid connection and grid-codes, Remote (off-grid) connections; Economics and life-cycle analysis.

Course Syllabus 

Pre-requisite: PRGR 603 or equivalent or consent of instructor.

PRGR 605 Wind Energy - 2 credits

The module covers the fundamentals of wind energy and the process and limitations of converting wind kinetic energy to electrical energy. It discusses the efficiency law and the governing equation of the conversion process. The module also covers the various types of wind turbines available in the commercial market along with their characteristics, and implementations’ advantages and disadvantages.

Course Syllabus

PRGR 606 Energy Storage - 2 credits

In this course various energy technologies will be presented and discussed in terms of their principle of operation, system components, energy density, maintenance, and cost. The different technologies that will be addressed for electrical energy storage are: batteries, compressed air, fly-wheel storage, pumped hydro-power, super-capacitors, and superconducting magnetic energy storage. Thermal and thermo-chemical energy storage technologies will also be covered.

Course Syllabus

PRGR 609 Renewable Energy Lab - 2 credits

Photovoltaic Cells: Operating principles of PV cells, Characteristics of PV modules, Effect of Temperature and irradiance, series parallel combinations, Alignment geometry, Maximum power point tracking, and Partial shading. Wind Power: Wind turbines types, Design and operation, Physical fundamentals, Doubly-fed induction generator, Effect of wind speed on voltage and frequency, and Optimal operating point.

Course Syllabus

PRGR 615 Biofuels - 2 credits

Course content includes studies of types, sources and processing of biodiesel, biomass, bio-methane and bioethanol, and assessing advantages, problems and principles in biofuel production. Biogas and digester design. Solid biomass processing.

Course Syllabus

PRGR 616 Waves, Tidal, and Hydro Renewable Energy - 2 credits

This course gives an overview of the use of ocean thermal, wave, tidal, and hydro renewable energy. It provides a comprehensive analysis of hydro renewable energy collection and utilization for electric power production and other applications with an emphasis on design, sizing, performance analysis and selection of hydro renewable energy technologies. Mini-hydro systems are also covered. It also discusses variety of designs for devices for extracting energy from waves, the technologies and methods for generating electricity from different ocean temperatures between the warm surface water of the ocean and the cold deep water.

PRGR 617 Energy Efficiency in Buildings Evaluation and Design - 2 credits

The module discusses various schemes of conserving energy in buildings and energy types including, space heating and cooling, water heating and energy for lighting and powering electrical and electronics equipment. It also covers passive and active energy conservation techniques including energy efficient HVAC equipment. Addresses integration of solar energy into boilers and condensing units of building systems and introduces optimized control strategies. The students will be introduced to Visual DOE or E-Quest to perform energy simulation of buildings. Such tools will then be used carry a full building simulation taking into consideration occupancy data, equipment, lights, and building envelope. A base case of energy usage will thus be established and energy conservation measures are then applied to deduce possible savings and their economic value.

Course Syllabus

PRGR 620 Energy Systems & Sustainable Environments - 2 credits

This course covers a wide range of topic and for ease of teaching should be divided in to three sections. Part 1 Worlwide importance of energy systems including their historical and current energy perspectives, concepts, and applications of energy systems. This section will also focus on estimation and evaluation of energy resources. Part 2 Sustainable Energy systems; approaches to energy systems analyses and sustainability metrics. Biological Carbon Capture Storage, including the following processes: soil carbon, CO2 to energy, Forests & forest ecology, Digestate from Anaeorbic Digestion (AD) process, Biochar Grassland management, Biomass to oil. Part 3 Comprehensive overview pf the principal types of renewable energy- including solar, thermal photovoltaics, bio-energy, hydro, tidal, wind, and wave. In addition the underlying physical and technological principles of renewable energy systems and the future prospects of different energy sources. Energy efficiency analyses including energy balance, cost benefit analysis, and cost efficiency analysis of various energy scenarios and renewable energy choices.

Course Syllabus

PRGR 621 Waste to Energy Processes & Technologies - 2 credits

  • Part 1 – Fundamental principles of waste management, with particular emphasis on organic wastes. Waste generation and characterization, and techniques for waste collection, storage, transport, utilization (including recycling and recovery). Focus is on the application of engineering science to develop integrated waste management systems.
  • Part 2 – Waste-to-energy technology: mass burning & modular combustion, refuse derived fuel systems, anaerobic digestion, composting. Comparison and benchmarking of the technologies with respect to energy efficiency, environmental impacts, costs etc. Hazardous waste generation, producer responsibility and legislation.
  • Part 3 – Waste-to-energy projects implementation concepts: risk assessment (waste, energy and materials market, environmental protection & legal issues); implementation process including; feasibility, siting, procurement/ownership, financing, plant construction & operations.

Course Syllabus

*Labs are non-mandatory electives and are generally offered face to face. Students not living in Lebanon or Egypt have the option to take the Lab virtually.